48 research outputs found

    Accelerating Cooperative Planning for Automated Vehicles with Learned Heuristics and Monte Carlo Tree Search

    Full text link
    Efficient driving in urban traffic scenarios requires foresight. The observation of other traffic participants and the inference of their possible next actions depending on the own action is considered cooperative prediction and planning. Humans are well equipped with the capability to predict the actions of multiple interacting traffic participants and plan accordingly, without the need to directly communicate with others. Prior work has shown that it is possible to achieve effective cooperative planning without the need for explicit communication. However, the search space for cooperative plans is so large that most of the computational budget is spent on exploring the search space in unpromising regions that are far away from the solution. To accelerate the planning process, we combined learned heuristics with a cooperative planning method to guide the search towards regions with promising actions, yielding better solutions at lower computational costs

    Decentralized Cooperative Planning for Automated Vehicles with Continuous Monte Carlo Tree Search

    Full text link
    Urban traffic scenarios often require a high degree of cooperation between traffic participants to ensure safety and efficiency. Observing the behavior of others, humans infer whether or not others are cooperating. This work aims to extend the capabilities of automated vehicles, enabling them to cooperate implicitly in heterogeneous environments. Continuous actions allow for arbitrary trajectories and hence are applicable to a much wider class of problems than existing cooperative approaches with discrete action spaces. Based on cooperative modeling of other agents, Monte Carlo Tree Search (MCTS) in conjunction with Decoupled-UCT evaluates the action-values of each agent in a cooperative and decentralized way, respecting the interdependence of actions among traffic participants. The extension to continuous action spaces is addressed by incorporating novel MCTS-specific enhancements for efficient search space exploration. The proposed algorithm is evaluated under different scenarios, showing that the algorithm is able to achieve effective cooperative planning and generate solutions egocentric planning fails to identify

    Decentralized Cooperative Planning for Automated Vehicles with Hierarchical Monte Carlo Tree Search

    Full text link
    Today's automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous environments. Based on cooperative modeling of other agents and Decoupled-UCT (a variant of MCTS), the algorithm evaluates the state-action-values of each agent in a cooperative and decentralized manner, explicitly modeling the interdependence of actions between traffic participants. Macro-actions allow for temporal extension over multiple time steps and increase the effective search depth requiring fewer iterations to plan over longer horizons. Without predefined policies for macro-actions, the algorithm simultaneously learns policies over and within macro-actions. The proposed method is evaluated under several conflict scenarios, showing that the algorithm can achieve effective cooperative planning with learned macro-actions in heterogeneous environments

    Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps

    Full text link
    Grid maps are widely used in robotics to represent obstacles in the environment and differentiating dynamic objects from static infrastructure is essential for many practical applications. In this work, we present a methods that uses a deep convolutional neural network (CNN) to infer whether grid cells are covering a moving object or not. Compared to tracking approaches, that use e.g. a particle filter to estimate grid cell velocities and then make a decision for individual grid cells based on this estimate, our approach uses the entire grid map as input image for a CNN that inspects a larger area around each cell and thus takes the structural appearance in the grid map into account to make a decision. Compared to our reference method, our concept yields a performance increase from 83.9% to 97.2%. A runtime optimized version of our approach yields similar improvements with an execution time of just 10 milliseconds.Comment: This is a shorter version of the masters thesis of Florian Piewak and it was accapted at IV 201

    Anomaly Detection in Autonomous Driving: A Survey

    Full text link
    Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.Comment: Daniel Bogdoll and Maximilian Nitsche contributed equally. Accepted for publication at CVPR 2022 WAD worksho

    Self Supervised Clustering of Traffic Scenes using Graph Representations

    Full text link
    Examining graphs for similarity is a well-known challenge, but one that is mandatory for grouping graphs together. We present a data-driven method to cluster traffic scenes that is self-supervised, i.e. without manual labelling. We leverage the semantic scene graph model to create a generic graph embedding of the traffic scene, which is then mapped to a low-dimensional embedding space using a Siamese network, in which clustering is performed. In the training process of our novel approach, we augment existing traffic scenes in the Cartesian space to generate positive similarity samples. This allows us to overcome the challenge of reconstructing a graph and at the same time obtain a representation to describe the similarity of traffic scenes. We could show, that the resulting clusters possess common semantic characteristics. The approach was evaluated on the INTERACTION dataset

    A Comprehensive Review on Ontologies for Scenario-based Testing in the Context of Autonomous Driving

    Full text link
    The verification and validation of autonomous driving vehicles remains a major challenge due to the high complexity of autonomous driving functions. Scenario-based testing is a promising method for validating such a complex system. Ontologies can be utilized to produce test scenarios that are both meaningful and relevant. One crucial aspect of this process is selecting the appropriate method for describing the entities involved. The level of detail and specific entity classes required will vary depending on the system being tested. It is important to choose an ontology that properly reflects these needs. This paper summarizes key representative ontologies for scenario-based testing and related use cases in the field of autonomous driving. The considered ontologies are classified according to their level of detail for both static facts and dynamic aspects. Furthermore, the ontologies are evaluated based on the presence of important entity classes and the relations between them

    One Ontology to Rule Them All: Corner Case Scenarios for Autonomous Driving

    Get PDF
    The core obstacle towards a large-scale deployment of autonomous vehicles currently lies in the long tail of rare events. These are extremely challenging since they do not occur often in the utilized training data for deep neural networks. To tackle this problem, we propose the generation of additional synthetic training data, covering a wide variety of corner case scenarios. As ontologies can represent human expert knowledge while enabling computational processing, we use them to describe scenarios. Our proposed master ontology is capable to model scenarios from all common corner case categories found in the literature. From this one master ontology, arbitrary scenario-describing ontologies can be derived. In an automated fashion, these can be converted into the OpenSCENARIO format and subsequently executed in simulation. This way, also challenging test and evaluation scenarios can be generated.Comment: Daniel Bogdoll and Stefani Guneshka contributed equally. Accepted for publication at ECCV 2022 SAIAD worksho

    Utilizing Hybrid Trajectory Prediction Models to Recognize Highly Interactive Traffic Scenarios

    Full text link
    Autonomous vehicles hold great promise in improving the future of transportation. The driving models used in these vehicles are based on neural networks, which can be difficult to validate. However, ensuring the safety of these models is crucial. Traditional field tests can be costly, time-consuming, and dangerous. To address these issues, scenario-based closed-loop simulations can simulate many hours of vehicle operation in a shorter amount of time and allow for specific investigation of important situations. Nonetheless, the detection of relevant traffic scenarios that also offer substantial testing benefits remains a significant challenge. To address this need, in this paper we build an imitation learning based trajectory prediction for traffic participants. We combine an image-based (CNN) approach to represent spatial environmental factors and a graph-based (GNN) approach to specifically represent relations between traffic participants. In our understanding, traffic scenes that are highly interactive due to the network's significant utilization of the social component are more pertinent for a validation process. Therefore, we propose to use the activity of such sub networks as a measure of interactivity of a traffic scene. We evaluate our model using a motion dataset and discuss the value of the relationship information with respect to different traffic situations
    corecore